Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes?
نویسندگان
چکیده
Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is supposed to be one of the mechanisms that contribute to the stabilisation of clear-water states in shallow lakes. The relevance of this process at ecosystem level, however, is debated because in situ evidence is difficult to achieve. Our literature review indicates that allelopathically active species such as Myriophyllum, Ceratophyllum, Elodea and Najas or certain charophytes are among the most frequent submerged macrophytes in temperate shallow lakes. The most common experimental approach for allelopathic interference between macrophytes and phytoplankton has been the use of plant extracts or purified plant compounds. Final evidence, however, requires combination with more realistic in situ experiments. Such investigations have successfully been performed with selected species. In situ allelopathic activity is also influenced by the fact that phytoplankton species exhibit differential sensitivity against allelochemicals both between and within major taxonomic groups such as diatoms, cyanobacteria and chlorophytes. In general, epiphytic species apparently are less sensitive towards allelochemicals than phytoplankton despite living closely attached to the plants and being of key importance for macrophyte growth due to their shading. Light and nutrient availability potentially influence the sensitivity of target algae and cyanobacteria. Whether or not additional stressors such as nutrient limitation enhance or dampen allelopathic interactions still has to be clarified. We strongly propose allelopathy as an important mechanism in the interaction between submerged macrophytes and phytoplankton in shallow lakes based on the frequent occurrence of active species and the knowledge of potential target species. The role of allelopathy interfering with epiphyton development is less well understood. Including further levels of complexity, such as nutrient interference, grazing and climate, will extend this ecosystem-based view of in situ allelopathy.
منابع مشابه
Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?
Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is ch...
متن کاملBenthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktoni...
متن کاملResponse of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes
Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns var...
متن کاملStage : The Crucial Role of Macrophytes in Regulating Trophic Interactions in Shallow Lake Wetlands
Hydrophilie, or water-Ioving, macrophytes characterize wetland ecosystems, indicating prerequisite conditions of hydrie soils and sufficient hydrology. The presence of such macrophytes is a key descriptor in multiple wetland definitions (Lewis 2001a) and macrophytes may be further used to actually describe partieular types of wetlands, such as cattail marshes. Macrophytes contribute significant...
متن کاملA MODIS-Based Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic Macrophytes in Lake Taihu
Satellite remote sensing can be an effective alternative for mapping cyanobacterial scums and aquatic macrophyte distribution over large areas compared with traditional ship’s site-specific samplings. However, similar optical spectra characteristics between aquatic macrophytes and cyanobacterial scums in red and near infrared (NIR) wavebands create a barrier to their discrimination when they co...
متن کامل